TR4 Project File Format

Page 13 of 44

Overall Project Layout

Signature

Room Array

Unused Slot Tables

TGA/Texture Information

WAS/Slot Information

Tile Specific Information

Each of these sections (except the Signature) has a lot of information. A lot of the information is variable length, making parsing very difficult. It limits you to a sequential load and verification of the data. It is hard to detect bad data and successfully skip it, since there are few checkpoints in the file to let you synchronize.

OK, first some common terminology and conventions I use.

First, all structures are given in C/C++ format.

Any fields named filler or dummy probably aren’t used.

Any fields named unknown or what are fields I haven’t figured out yet.

Fields with a comment of // = … will ALWAYS have the indicated value.

Besides standard C/C++ data types, I use the following types defined in Microsoft headers.

CHAR

signed char

BYTE

unsigned char

WORD
unsigned short (16 bits)

DWORD
unsigned long (32 bits)

The above types preceded by P are pointers to the indicated data type (PCHAR, PBYTE, PWORD, and PDWORD).

 What I call a block is called a sector by some. Technically its use does make it a sector. But since they are square, and we use them like building blocks, that is what I call them.

 A slot is an entry in an array. They are normally numbered sequentially starting at ZERO. I use the term slot mostly in conjunction with WAD objects and sound effects.

 A Thing is any thing you can add to the map. It includes Doors, Triggers, Wad Objects, any type of Cameras, any type of Lights, Sinks, Sounds, and Fog Bulbs. I had to pick a different name than Object, since that word is already overused.

 A Light thing is any type of Lights, Any type of Cameras, Sinks, Sounds, and Fog Bulbs. Basically, any Effect (from the menu) and any Light.

 I also use Light generically to mean any type of light. This means Light, Shadow, Sun, Effect (light), and Spot.

 Most people are familiar with graphs that have an X and Y coordinate. In 3D there is also a Z coordinate. In TR, the X coordinate starts at ZERO on the left and gets positive as you go to the right. The Y coordinate measures altitude in the map. When you first draw rooms, they are placed at ZERO floor altitude. The Y coordinate gets positive as you go DOWN, and negative as you go UP. The Z coordinate is ZERO at the top of the 2D display. It gets positive as you move out of the screen, and negative as you move into the screen.

Signature

 The signature is the first 12 bytes of the file. It is a C-style string containing “PROJFILE1”. The last 3 bytes are all zero.

 After the signature is a DWORD containing the number of room slots in the project. This is the total slots available, including Empty rooms. It is ALWAYS a multiple of 100 because of the way the Level Editor adds rooms to a project.

Room Array

 This section contains all of the room definitions. They are variable length for several reasons. Because of the variable length, and optional presence of data, if the data is corrupt parsing the rooms can be very difficult. Sometimes you just have to delete an entire room, and even that can result in losing more rooms.

Room Head

This structure defines the beginning of the room, and its basic characteristics.

typedef struct PRJ_ROOMHEAD_S

{

WORD
wId;

// type of object

char

cName[80];

// name of room

DWORD
dwZPixelWorld;

// North Z pixel in world grid

DWORD
unknown1;

DWORD
dwXPixelWorld;

// West X pixel in world grid

DWORD
unknown2;

WORD
what1;

// = 0

WORD
wXDisplayOffset;

WORD
wZDisplayOffset;

short

sXBlocks;

// # blocks in X (3-20)

short

sZBlocks;

// # blocks in Z (3-20)

short

sXBlockWorld;

// block X in world grid (0-99)

short

sZBlockWorld;

// block Z in world grid (0-99)

WORD
wLink;

} prj_roomh_t, *pprj_roomh_t;

	wId
	This is an id describing the type of room. There are only 2 types used.

TYPE_ROOM_DEFINED

0x0000

 This is a room that actually exists.

TYPE_ROOM_UNDEFINED
0x0001

 This is an Empty room.

If the room is Empty, the rest of the room information is missing. Even the rest of the header is not there. You see why it can be hard to parse a project?

	cName
	This is the name of the room. It can be up to 79 characters long, leaving one character for the null delimiter.

If you don’t use too many characters, the LE adds a string that looks like “(n:x)” where n is the room’s actual slot number, and x is the logical position not counting empty slots. For instance, (10:8) would mean that this is the 10th room, but only the 8th non-empty room out of those 10. This means that before this are 2 empty room slots.

	dwZPixelWorld
	The absolute PIXEL coordinate of the room on the Z axis. This refers to the North edge of the room (gray square). If the room is in the top-left corner of the 2D view, the coordinate will be zero.

	dwXPixelWorld
	The absolute PIXEL coordinate of the room on the X axis. This refers to the West edge of the room (gray square). If the room is in the top-left corner of the 2D view, the coordinate will be zero.

	wXDisplayOffset
	This is how many blocks to indent the room from the left side of the room grid. It is how the room is always displayed centered in the grid. It is only used in WinRoomEdit.

(20 – sXBlocks) / 2.

	wZDisplayOffset
	This is how many blocks to indent the room from the top of the room grid. It is how the room is always displayed centered in the grid. It is only used in WinRoomEdit.

(20 – sZBlocks) / 2.

	sXBlocks
	The number of blocks in the room on the X axis. This is the number of blocks plus 2 for the gray blocks around the room. It MUST be in the range 3 – 20 since you can’t have a room smaller than 1x1 or larger than 18x18.

	sZBlocks
	The number of blocks in the room on the Z axis. This is the number of blocks plus 2 for the gray blocks around the room. It MUST be in the range 3 – 20 since you can’t have a room smaller than 1x1 or larger than 18x18.

	sXBlockWorld
	The BLOCK position of the room on the X axis within the world grid. It refers to the Northwest corner gray block. Value 0-99.

	SZBlockWorld
	The BLOCK position of the room on the Z axis within the world grid. It refers to the Northwest corner gray block. Value 0-99.

	wLink
	This is simple, yet complicated to explain. When you have rooms connected by doors, and you move one of the rooms on the 2D display, all of the other connected rooms move with it. The LE uses this field to know which rooms to move as a single unit.

I won’t try to explain how the LE determines the value to put here. It is kind of complicated, because it can change at any time, depending on how you build your level.

This is a room number of a room that is connected to this room. This field forms a linked list of sorts, pointing to another room, not necessarily the next one (what order would you use, since a room can have multiple doors). When you move a room on the 2D display, the LE also moves the room pointed to by this field. Then it looks at that room, and move the room it links to. And so on, until it finds a link that points back to the first room, then it stops. So the values in this field must form a circular list of room numbers. If the links are not circular, the LE will lockup.

You can have different sections of rooms that are not connected, in which case each set of rooms will have its own circular link list. Title levels provided by Core are the only ones I know about that do this. Normal, playable levels generally have all rooms linked together by a door at some point in the map.

I hope this explanation is enough. Just be warned – if this field is not set correctly in a circular link, the LE will lockup when you try to move a room.

Door Array

 After the room head is the array of doors in the room. This is variable length data, and depends on the number of doors.

 There is always a

WORD wnDoors

containing the number of doors. If this is zero, there is no more door information, so skip to the Object Array.

 If the number of doors is greater than zero, then the very next thing is an array of Thing Index values for the doors.

WORD wThingIndex[wnDoors]

There is one word for each door in the room. The word contains the index within the 2000-entry Thing table where the door belongs. This index number is IMPORTANT, since it is used by other things to refer to the door. As an example, a door in one room MUST have a matching door in another room. Each of the 2 doors will point to the other door by its Thing Index.

 After this array are the actual door structures for each door. These door structures MUST come in the same order as their index appears in the array. This is the only way the door can be matched to its Thing Index, by the order in which they appear.

typedef struct PRJ_DOOR_S

{

WORD
wId;

short

sXBlockRoom;

short

sZBlockRoom;

short

sXBlocks;
 // also for wall panels

short

sZBlocks;
 // not for wall panels

WORD
wYClickAboveFloor;
// = 0

WORD
wRoom;
 // room # where this door is

WORD
wSlot;

 // thing index of other door

WORD
filler[13];
 // = 0

} prj_door_t, *pprj_door_t;

	WId
	Like the room id, this value tells what type of door this is.

TYPE_DOOR_WEST
0x0001

 This door is on the West wall of the room.

TYPE_DOOR_NORTH
0x0002

 This door is on the North wall of the room.

TYPE_DOOR_FLOOR
0x0004

 This door is on the Floor of the room.

TYPE_DOOR_EAST
 0xfffe

 This door is on the East wall of the room.

TYPE_DOOR_SOUTH
0xfffd

 This door is on the South wall of the room.

TYPE_DOOR_CEILING
0xfffb

 This door is on the Ceiling of the room.

Unless you are a programmer, you probably won’t notice that the values for 2 doors that will face each other are one’s complements of each other. This does make it fairly easy to detect if 2 doors are actually capable of facing each other.

	sXBlockRoom
	This is the BLOCK position of the door in the X axis RELATIVE to the West side of the room. If it is on the West wall, this is zero.

	sZBlockRoom
	This is the BLOCK position of the door in the Z axis RELATIVE to the North side of the room. If it is on the North wall, this is zero.

	SXBlocks
	This is how many blocks are in the door along the X axis. If this door is on the West or East wall, this is always 1.

	SZBlocks
	This is how many blocks are in the door along the Z axis. If this door is on the North or South wall, this is always 1.

	wYClickAboveFloor
	NOT USED

	WRoom
	The room number where this door is.

	WSlot
	The Thing Index of the matching door in the other room.

Object Array
IMPORTANT: This section describes objects from the Wad file AND Triggers. Both types of things are stored here. They have different structure lengths, which makes parsing corrupted data even harder.

 After the Door Array is the array of objects in the room. This is variable length data, and depends on the number of objects.

 There is always a

WORD wnObjects

containing the number of objects. If this is zero, there is no more object information, so skip to the Light Array.

 If the number of objects is greater than zero, then the very next thing is an array of Thing Index values for the objects.

WORD wThingIndex[wnObjects]

There is one word for each object in the room. The word contains the index within the 2000-entry Thing table where the object belongs. This index number is IMPORTANT, since it is used by other things to refer to the object. As an example, a trigger for a baddy will contain the Thing Index of the baddy it triggers.

 After this array are the actual object and trigger structures. These structures MUST come in the same order as their index appears in the array. This is the only way the object or trigger can be matched to its Thing Index, by the order in which they appear.

 First, let’s look at the object structure.

typedef struct PRJ_OBJECT_S

{

WORD
wId;

short

sXBlockRoom;

short

sZBlockRoom;

short

sXBlocks;
// = 1

short

sZBlocks;
// = 1

WORD
wYClickAboveFloor;

WORD
wRoom;

WORD
wSlot;

WORD
wOcb;

WORD
wOrientation;

long

lZPixelRoom;

long

lYPixelWorld;

long

lXPixelRoom;

WORD
what5;

// = 0

WORD
wFacing;

short

sRoll;

// = 0

WORD
wTint;

short

sTimer;

} prj_object_t, *pprj_object_t;

	wId
	Like the room id, this value tells what type of door this is.

TYPE_OBJECT

0x0008

 This is the value that says this is an object from the Wad.

	sXBlockRoom
	This is the BLOCK position of the object in the X axis RELATIVE to the West side of the room. 1-18.

	sZBlockRoom
	This is the BLOCK position of the object in the Z axis RELATIVE to the North side of the room. 1-18.

	sXBlocks
	This is always 1 for objects.

	sZBlocks
	This is always 1 for objects.

	wYClickAboveFloor
	This is how many clicks above the floor that the object was placed. If you raise or lower the floor block, the object keeps the same relative position to the floor. Objects can be positioned in ½ click increments (128 pixels).

	wRoom
	The room number where this door is.

	wSlot
	This is the WAD slot number identifying which object this is.

	wOcb
	This is the OCB setting for this object. They are self-explanatory.

OBJECT_OCB_SW1

0x0002

OBJECT_OCB_SW2

0x0004

OBJECT_OCB_SW3

0x0008

OBJECT_OCB_SW4

0x0010

OBJECT_OCB_SW5

0x0020

OBJECT_OCB_INVISIBLE
 0x0001

OBJECT_OCB_CLEAR_BODY
0x0080

	wOrientation
	The orientation of the object. This is when you right click on it and it moves from the center of the block to one of 4 positions around the outside edge. It is actually placed ½ click in from the edge of the block.

ORIENTATION_CENTER

0x0000

 The object is in the center of the block.

ORIENTATION_WEST

0x0010

 The object is on the West edge of the block.

ORIENTATION_NORTH

0x0020

 The object is on the North edge of the block.

ORIENTATION_EAST

0x0030

 The object is on the East edge of the block.

ORIENTATION_SOUTH

0x0040

 The object is on the South edge of the block.

	lZPixelRoom
	The pixel coordinate of the object on the Z axis, relative to the North side of the room. It is equal to sZBlockRoom * 1024, with adjustment made for the orientation. WAD object orientation is always center.

	lYPixelWorld
	The pixel coordinate of the object on the Y axis. This is within the entire world space of 256 clicks. This is negative going UP.

	lXPixelRoom
	The pixel coordinate of the object on the X axis, relative to the West side of the room. It is equal to sXBlockRoom * 1024, with adjustment made for the orientation. WAD object orientation is always center.

	wFacing
	The angle the object is facing. You can rotate the object in 8 different angles. Values are below. This does not refer to the direction an object is LOOKING. When first placed in the map, the object is considered facing North, no matter which way it is looking.

OBJECT_FACING_N

0x0000

OBJECT_FACING_NE

0x2000

OBJECT_FACING_E

0x4000

OBJECT_FACING_SE

0x6000

OBJECT_FACING_S

0x8000

OBJECT_FACING_SW

0xa000

OBJECT_FACING_W

0xc000

OBJECT_FACING_NW

0xe000

	sRoll
	NOT USED

	wTint
	The tint of the object.

OBJECT_TINT_RED

0x001f

OBJECT_TINT_GREEN
0x03e0

OBJECT_TINT_BLUE
0x7c00

	sTimer
	NOT USED

Now let’s look at the trigger structure.

typedef struct PRJ_TRIGGER_S

{

WORD
wId;

short

sXBlockRoom;

short

sZBlockRoom;

short

sXBlocks;

short

sZBlocks;

WORD
wYClickAboveFloor;
// = 0

WORD
wRoom;

WORD
wSlot;

WORD
sTimer;

// = 0

WORD
wOrientation;
 // = 0

long

lZPixelRoom;

long

lYPixelWorld;
// = 0

long

lXPixelRoom;

WORD
what5;

// = 0

WORD
wFacing;

// = 0

short

sRoll;

// = 0

WORD
wSpeed;

// = 0

WORD
wOcb;

// = 0

WORD
wType;

WORD
wObject;

// obj index, flip #, sound slot, etc

short

sTTimer;

WORD
wSwitches;

WORD
wTrigger;

} prj_trigger_t, *pprj_trigger_t;

This structure is a little bigger than the object structure. It has extra fields at the end that are only used by triggers.

NOTE: I have found triggers that have negative sXBlockRoom and sZBlockRoom. This happens when a trigger is in one room, and the object it triggers is in a different room. The trigger is moved to the same room as the object (at least the way it is stored in the project) and the coordinates are made negative. I am still investigating this. Until I figure it out, my fix program just doesn’t do anything with any thing that has negative coordinates.

	wId
	Like the room id, this value tells what type of thing this is.

TYPE_TRIGGER

0x0010

 This is the value that says this is a trigger.

	sXBlockRoom
	This is the BLOCK position of the trigger in the X axis RELATIVE to the West side of the room. The trigger can be recorded in another room, where the triggered object it, so this can be negative.

	sZBlockRoom
	This is the BLOCK position of the trigger in the Z axis RELATIVE to the North side of the room. The trigger can be recorded in another room, where the triggered object it, so this can be negative.

	sXBlocks
	The number of blocks along the X axis that are included in the trigger.

	sZBlocks
	The number of blocks along the Z axis that are included in the trigger.

	wRoom
	The room number where this trigger is.

	wSlot
	This is the trigger index number. Only 512 total triggers are allowed, and this index keeps track of them. 0-511.

	lZPixelRoom
	The pixel coordinate of the trigger on the Z axis, relative to the North side of the room. It is equal to sZBlockRoom * 1024, with adjustment made for the orientation. Trigger orientation is always center.

	lXPixelRoom
	The pixel coordinate of the trigger on the X axis, relative to the West side of the room. It is equal to sXBlockRoom * 1024, with adjustment made for the orientation. Trigger orientation is always center.

	wType
	The type of trigger.

TRIGGER_TYPE_TRIGGER

0

TRIGGER_TYPE_PAD

1

TRIGGER_TYPE_SWITCH

2

TRIGGER_TYPE_KEY

3

TRIGGER_TYPE_PICKUP

4

TRIGGER_TYPE_HEAVY

5

TRIGGER_TYPE_ANTIPAD

6

TRIGGER_TYPE_COMBAT

7

TRIGGER_TYPE_DUMMY

8

TRIGGER_TYPE_ANTITRIGGER
 9

TRIGGER_TYPE_HEAVY_SWITCH
10

TRIGGER_TYPE_HEAVY_ANTI

11

TRIGGER_TYPE_MONKEY

12

	wObject
	The Thing Index of the object that is being triggered.

	sTTimer
	The trigger timer value.

	wSwitches
	The trigger switches.

TRIGGER_SW_5

0x0020

TRIGGER_SW_4

0x0010

TRIGGER_SW_3

0x0008

TRIGGER_SW_2

0x0004

TRIGGER_SW_1

0x0002

TRIGGER_SW_ONESHOT
0x0001

	wTrigger
	Identifies what is being triggered.

TRIGGER_OBJECT

0

TRIGGER_FLIPMAP
3

TRIGGER_FLIPON

4

TRIGGER_FLIPOFF

5

TRIGGER_TARGET

6

TRIGGER_FINISH

7

TRIGGER_CD

8

TRIGGER_FLIPEFFECT
9

TRIGGER_SECRET

10

TRIGGER_BODYBAG
11

TRIGGER_FLYBY

12

TRIGGER_CUTSCENE
13

Light Array
IMPORTANT: This section describes Sinks, Sounds, Cameras, Fixed Cameras, Flyby Cameras, Fog bulbs, Lights, Shadows, Sun, Spotlights, and Effect lights. Sinks, Sounds, and Cameras have different structure lengths than Fog Bulbs and all lights, which makes parsing corrupted data even harder.

 After the Object Array is a DWORD containing the ambient light setting for the room. The format of the DWORD is 0x00bbggrr.

 Following that is the array of light thins in the room. This is variable length data, and depends on the number of light things.

 There is always a

WORD wnLights

containing the number of light things. If this is zero, there is no more light information, so skip to the Room Tail.

 If the number of lights is greater than zero, then the very next thing is an array of Thing Index values for the lights.

WORD wThingIndex[wnLights]

There is one word for each light in the room. The word contains the index within the 2000-entry Thing table where the light belongs. This index number is IMPORTANT, since it is used by other things to refer to the light thing. As an example, a trigger for a camera will contain the Thing Index of the camera it triggers.

 After this array are the actual structures. These structures MUST come in the same order as their index appears in the array. This is the only way the light thing can be matched to its Thing Index, by the order in which they appear.

 First, let’s look at the light structure. This is the same for Fog Bulb, Light, Shadow, Sun, Spotlight, and Effect light.

typedef struct PRJ_LIGHT_S

{

WORD
wId;

short

sXBlockRoom;

short

sZBlockRoom;

short

sXBlocks;

// = 1

short

sZBlocks;

// = 1

WORD
wYClickAboveFloor;

WORD
wRoom;

WORD
wSlot;

WORD
sTimer;

// = 0

WORD
wOrientation;

long

lZPixelRoom;

long

lYPixelWorld;

long

lXPixelRoom;

WORD
what5;

// = 0

WORD
wFacing;

// = 0

short

sRoll;

// = 0

WORD
wSpeed;

// = 0

WORD
wOcb;

// = 0

short

sIntensity;

float

fIn;

float

fOut;

float

fX;

float

fY;

float

fLen;

float

fCut;

BYTE

bR;

BYTE

bG;

BYTE

bB;

BYTE

bOn;

// 0 = off, 1 = on

} prj_light_t, *pprj_light_t;

	wId
	Like the room id, this value tells what type of thing this is.

TYPE_LIGHT

0x4000

TYPE_SHADOW
0x6000

TYPE_SUN

0x4200

TYPE_EFFECT
0x5000

TYPE_SPOT

0x4100

TYPE_FOG

0x4020

	sXBlockRoom
	This is the BLOCK position of the light in the X axis RELATIVE to the West side of the room. 1-18.

	sZBlockRoom
	This is the BLOCK position of the object in the Z axis RELATIVE to the North side of the room. 1-18.

	wYClicksAboveFloor
	This is how many clicks above the floor that the light was placed. If you raise or lower the floor block, the light keeps the same relative position to the floor. Lights can be positioned in ½ click increments (128 pixels). It is positive.

	wRoom
	The room number where this light is.

	wSlot
	This is the light index number. Only 768 total lights are allowed, and this index keeps track of them. 0-767.

	wOrientation
	The orientation of the light. This is when you right click on it and it moves from the center of the block to one of 4 positions around the outside edge. It is actually placed ½ click in from the edge of the block.

ORIENTATION_CENTER

0x0000

 The light is in the center of the block.

ORIENTATION_WEST

0x0010

 The light is on the West edge of the block.

ORIENTATION_NORTH

0x0020

 The light is on the North edge of the block.

ORIENTATION_EAST

0x0030

 The light is on the East edge of the block.

ORIENTATION_SOUTH

0x0040

 The light is on the South edge of the block.

	lZPixelRoom
	The pixel coordinate of the light on the Z axis, relative to the North side of the room. It is equal to sZBlockRoom * 1024, with adjustment made for the orientation.

	lYPixelWorld
	The pixel coordinate of the light on the Y axis. This is within the entire world space of 256 clicks. This is negative going UP.

	lXPixelRoom
	The pixel coordinate of the light on the X axis, relative to the West side of the room. It is equal to sXBlockRoom * 1024, with adjustment made for the orientation.

	sIntensity
	The intensity of the light. Used for ALL light types. This is a signed 16-bit binary number, with an assumed decimal point after the high-order 3 bits. The low-order 13 bits are decimal positions, in standard binary notation. That is, .1 is ½, .01 is ¼, .001 is 1/8, etc. The low-order byte is rarely used, because the decimal places are so insignificant. The range of this value is basically –4 thru +3.999. Ranges vary by light type.

Light

0 – 1 (0x0000 – 0x1fff)

Shadow

-1 – 0 (0xe000 – 0xffff, 0x0000)

Sun

0 – 1 (0x0000 – 0x1fff)

Spot

0 – 1 (0x0000 – 0x1fff)

Effect

-4 – 3.99 (0x8000 – 0xffff, 0x0000 – 0x7fff)

Fog Bulb

0 – 1 (0x0000 – 0x1fff)

	fIn
	This is indeed a floating-point value. But it is not quite the value displayed by the LE. When setting this value, it increments by 1/32 at a time (decimal .03125). A value of 32 “clicks” represents the integer 1.00. This value is then multiplied by 32. To convert this value to what is displayed by the LE, use the formula (fIn / 32) * .03125.

The range is 0 – 32, but it must be less than fOut.

The exception to this is for Spot lights. In this case the value is in the range 0 – 360, and it is the exact value (no conversion required). This is not used for Sun and Effect lights.

	fOut
	This is also a floating-point value. It is the same format as fIn. The range is 0 – 32, but it must be greater than fIn.

The exception to this is for Spot lights. In this case the value is in the range 0 – 360, and it is the exact value (no conversion required). This is not used for Sun and Effect lights.

	fX
	This is a floating-point integer value in the range 0 – 360. It is only used for Sun and Spot lights.

	fY
	This is a floating-point integer value in the range 0 – 360. It is only used for Sun and Spot lights.

	fLen
	This is a floating-point value in the range 0 – 32. It is only used for Spot lights.

	fCut
	This is a floating-point value in the range 0 – 64. It is only used for Spot lights.

	bR
	The red part of the light color.

	bG
	The green part of the light color.

	bB
	The Blue part of the light color.

	bOn
	This tells if the light is on or off. ZERO is OFF, 1 is ON.

typedef struct PRJ_SOUND_S

{

WORD
wId;

short

sXBlockRoom;

short

sZBlockRoom;

short

sXBlocks;

// = 1

short

sZBlocks;

// = 1

WORD
wYClickAboveFloor;

WORD
wRoom;

WORD
wSlot;

WORD
sTimer;

// = 0

WORD
wOrientation;

long

lZPixelRoom;

long

lYPixelWorld;

long

lXPixelRoom;

WORD
what5;

// = 0

WORD
wFacing;

// = 0

short

sRoll;

// = 0

WORD
wSpeed;

// = 0

WORD
wOcb;

// = 0

} prj_sound_t, *pprj_sound_t;

	wId
	Like the room id, this value tells what type of thing this is.

TYPE_SOUND

0x4C00

 This is the value that says this is a sound.

	sXBlockRoom
	This is the BLOCK position of the sound in the X axis RELATIVE to the West side of the room. 1-18.

	sZBlockRoom
	This is the BLOCK position of the sound in the Z axis RELATIVE to the North side of the room. 1-18.

	sXBlocks
	This is always 1 for sounds.

	sZBlocks
	This is always 1 for sounds.

	wYClickAboveFloor
	This is how many clicks above the floor that the sound was placed. If you raise or lower the floor block, the sound keeps the same relative position to the floor. Sounds can be positioned in ½ click increments (128 pixels). Always positive.

	wRoom
	The room number where this sound is.

	wSlot
	This is the sound slot number identifying which sound to play. It is one of the 370 sound effect numbers.

	sTimer
	This is always ZERO for sounds.

	wOrientation
	The orientation of the sound. This is when you right click on it and it moves from the center of the block to one of 4 positions around the outside edge. It is actually placed ½ click in from the edge of the block.

ORIENTATION_CENTER

0x0000

 The sound is in the center of the block.

ORIENTATION_WEST

0x0010

 The sound is on the West edge of the block.

ORIENTATION_NORTH

0x0020

 The sound is on the North edge of the block.

ORIENTATION_EAST

0x0030

 The sound is on the East edge of the block.

ORIENTATION_SOUTH

0x0040

 The sound is on the South edge of the block.

	lZPixelRoom
	The pixel coordinate of the object on the Z axis, relative to the North side of the room. It is equal to sZBlockRoom * 1024, with adjustment made for the orientation.

	lYPixelWorld
	The pixel coordinate of the object on the Y axis. This is within the entire world space of 256 clicks. This is negative going UP.

	lXPixelRoom
	The pixel coordinate of the object on the X axis, relative to the West side of the room. It is equal to sXBlockRoom * 1024, with adjustment made for the orientation.

typedef struct PRJ_SINK_S

{

WORD
wId;

short

sXBlockRoom;

short

sZBlockRoom;

short

sXBlocks;
// = 1

short

sZBlocks;
// = 1

WORD
wYClickAboveFloor;

WORD
wRoom;

WORD
wSlot;

// = 0

WORD
sTimer;

WORD
wOrientation;

long

lZPixelRoom;

long

lYPixelWorld;

long

lXPixelRoom;

WORD
what5;

// = 0

WORD
wFacing;
// = 0

short

sRoll;

// = 0

WORD
wSpeed;
// = 0

WORD
wOcb;

// = 0

} prj_sink_t, *pprj_sink_t;

	wId
	Like the room id, this value tells what type of thing this is.

TYPE_SINK

0x4400

 This is the value that says this is a sink.

	sXBlockRoom
	This is the BLOCK position of the sink in the X axis RELATIVE to the West side of the room. 1-18.

	sZBlockRoom
	This is the BLOCK position of the sink in the Z axis RELATIVE to the North side of the room. 1-18.

	sXBlocks
	This is always 1 for sinks.

	sZBlocks
	This is always 1 for sinks.

	wYClickAboveFloor
	This is how many clicks above the floor that the sink was placed. If you raise or lower the floor block, the sink keeps the same relative position to the floor. Objects can be positioned in ½ click increments (128 pixels). Always positive.

	wRoom
	The room number where this sink is.

	wSlot
	NOT USED

	sTimer
	This is always ZERO for sinks.

SINK_TIMER_SW1

0x0001

SINK_TIMER_SW2

0x0002

SINK_TIMER_SW4

0x0004

SINK_TIMER_SW8

0x0008

SINK_TIMER_SW16
 0x0010

	wOrientation
	The orientation of the sink. This is when you right click on it and it moves from the center of the block to one of 4 positions around the outside edge. It is actually placed ½ click in from the edge of the block.

ORIENTATION_CENTER

0x0000

 The sink is in the center of the block.

ORIENTATION_WEST

0x0010

 The sink is on the West edge of the block.

ORIENTATION_NORTH

0x0020

 The sink is on the North edge of the block.

ORIENTATION_EAST

0x0030

 The sink is on the East edge of the block.

ORIENTATION_SOUTH

0x0040

 The sink is on the South edge of the block.

	lZPixelRoom
	The pixel coordinate of the sink on the Z axis, relative to the North side of the room. It is equal to sZBlockRoom * 1024, with adjustment made for the orientation.

	lYPixelWorld
	The pixel coordinate of the sink on the Y axis. This is within the entire world space of 256 clicks. This is negative going UP.

	lXPixelRoom
	The pixel coordinate of the sink on the X axis, relative to the West side of the room. It is equal to sXBlockRoom * 1024, with adjustment made for the orientation.

typedef struct PRJ_CAMERA_S

{

WORD
wId;

short

sXBlockRoom;

short

sZBlockRoom;

short

sXBlocks;

// = 1

short

sZBlocks;

// = 1

WORD
wYClickAboveFloor;

WORD
wRoom;

WORD
wSlot;

WORD
sTimer;

WORD
wOrientation;

long

lZPixelRoom;

long

lYPixelWorld;

long

lXPixelRoom;

WORD
what5;

// = 0

WORD
wFacing;

// = 0

short

sRoll;

// = -180 - 180

WORD
wSpeed;

WORD
wOcb;

} prj_camera_t, *pprj_camera_t;

	wId
	Like the room id, this value tells what type of thing this is.

TYPE_CAMERA

0x4800

TYPE_CAMERA_FIXED
0x4080

TYPE_CAMERA_FLYBY
0x4040

	sXBlockRoom
	This is the BLOCK position of the camera in the X axis RELATIVE to the West side of the room. 1-18.

	sZBlockRoom
	This is the BLOCK position of the camera in the Z axis RELATIVE to the North side of the room. 1-18.

	sXBlocks
	This is always 1 for cameras.

	sZBlocks
	This is always 1 for cameras.

	wYClickAboveFloor
	This is how many clicks above the floor that the camera was placed. If you raise or lower the floor block, the camera keeps the same relative position to the floor. Cameras can be positioned in ½ click increments (128 pixels). Always positive.

	wRoom
	The room number where this sound is.

	wSlot
	This was used for a completely different purpose for cameras. It is a combination of 3 fields, each occupying a bit-field within the word. The fields and their bit mask are below.

CAMERA_VALUE_SEQ
0xe000

CAMERA_VALUE_NUM
0x1f00

CAMERA_VALUE_FOV
0x00ff

	sTimer
	The timer value for the camera..

	wOrientation
	The orientation of the camera. This is when you right click on it and it moves from the center of the block to one of 4 positions around the outside edge. It is actually placed ½ click in from the edge of the block.

ORIENTATION_CENTER

0x0000

 The camera is in the center of the block.

ORIENTATION_WEST

0x0010

 The camera is on the West edge of the block.

ORIENTATION_NORTH

0x0020

 The camera is on the North edge of the block.

ORIENTATION_EAST

0x0030

 The camera is on the East edge of the block.

ORIENTATION_SOUTH

0x0040

 The camera is on the South edge of the block.

	lZPixelRoom
	The pixel coordinate of the object on the Z axis, relative to the North side of the room. It is equal to sZBlockRoom * 1024, with adjustment made for the orientation.

	lYPixelWorld
	The pixel coordinate of the object on the Y axis. This is within the entire world space of 256 clicks. This is negative going UP.

	lXPixelRoom
	The pixel coordinate of the object on the X axis, relative to the West side of the room. It is equal to sXBlockRoom * 1024, with adjustment made for the orientation.

	sRoll
	The roll value for the camera. No special coding, just straight binary in the range –180 thru +180 inclusive.

	wSpeed
	The speed for the camera.

	wOcb
	The OCB switches for the camera.

CAMERA_OCB_SW15
0x8000

CAMERA_OCB_SW14
0x4000

CAMERA_OCB_SW13
0x2000

CAMERA_OCB_SW12
0x1000

CAMERA_OCB_SW11
0x0800

CAMERA_OCB_SW10
0x0400

CAMERA_OCB_SW9
0x0200

CAMERA_OCB_SW8
0x0100

CAMERA_OCB_SW7
0x0080

CAMERA_OCB_SW6
0x0040

CAMERA_OCB_SW5
0x0020

CAMERA_OCB_SW4
0x0010

CAMERA_OCB_SW3
0x0008

CAMERA_OCB_SW2
0x0004

CAMERA_OCB_SW1
0x0002

CAMERA_OCB_SW0
0x0001

Room Tail
 This structure is not quite the end of the room. It contains fliproom information and general flags. The structure is below.

typedef struct PRJ_ROOMTAIL_S

{

short

sFlipRoom;

// -1 if none, else room #

// of the flip for this room

WORD
wFlags1;
 // flags

BYTE

bWater;

// water level (0-3)

BYTE

bMist;

// mist level (0-3)

BYTE

bReflection;

// reflection level (0-3)

WORD
wFlags2;

// more flags

} prj_roomt_t, *pprj_roomt_t;

	sFlipRoom
	This is the room number of the flipmap room. If this room does not have a flipmap, this contains –1.

	wFlags1
	These are several flag bits that affect the room.

ROOM_F1_REFLECTION
0x0200

 This flag is set if reflection is turned on.

ROOM_F1_MIST

0x0100

 This flag is set if mist is turned on.

ROOM_F1_NL

0x0080

 This flag is set if the NL button is clicked.

ROOM_F1_BIT6 0x0040

 I don’t know what this flag is, and it really pisses me off. I just can’t figure it out. I have found maps with this flag set, and I have done everything possible to the room to make it go off, and it doesn’t. This is one of the things I still have to figure out.

ROOM_F1_OUTSIDE
0x0020

 This flag is set if the room is outside.

ROOM_F1_HORIZON
0x0008

 This flag is set if the room has the horizon color applied to any surface. That is the black color that is transparent in the game.

ROOM_F1_FLIPROOM
0x0002

 This flag is set if this room is a flipmap for another room.

ROOM_F1_WATER

0x0001

 This flag is set if water is turned on.

	bWater
	This is the water level minus 1. It is ignored unless the flag is set.

Range is 0 – 3.

	bMist
	This is the mist level minus 1. It is ignored unless the flag is set.

Range is 0 – 3.

	bReflection
	This is the reflection level minus 1. It is ignored unless the flag is set.

Range is 0 – 3.

	wFlags2
	More flags, though not many are used.

ROOM_F2_LOCKED 0x0100

 This flag is set when you click the lock button to lock the room into it’s current position in the world.

ROOM_F2_FLIPMAP 0x00ff

 This contains the 8-bit flipmap id you assign to your flipmap so you can uniquely identify it to a trigger.

Block Table

 This final section of the room contains the block definitions for the room. It is arranged as a 2D matrix, with X incrementing fastest. Each row of blocks in the room is stored with the columns arranged left to right. The rows are arranged top to bottom. This table includes entries for the gray blocks around the room. The 4 gray blocks in the extreme corners of the room are technically impossible to use. Just try – the LE will stop you.

 The structure for a block definition is below.

typedef struct PRJ_BLOCK_S

{

WORD
wId;

WORD
wFlags1;

short

sYClickWorldFloor;

// lowest corner click level

short

sYClickWorldCeiling;
// highest corner click level

// these 4 arrays are indexed by BLOCK_CORNER_*

char

cFFace[4];

// add to floor

char

cCFace[4];

// add to ceiling

char

cFDiv[4];

// add to floor (adjusted by E/D)

char

cCDiv[4];

// add to ceiling (adjusted by R/F)

// this array is indexed by BLOCK_TEX_*

prj_tex_t
texTextures[MAX_BLOCK_SURFACES];

WORD
wFlags2;

WORD
wFlags3;

} prj_block_t, *pprj_block_t;

NOTE: To understand how I reference the texture information, you need to know how I identify the surfaces of the blocks. First, as you look at the room grid, you have North, South, East, and West. A North surface is on the North side of the block and faces to the North. As for the section numbering, see below.

	1

	2

	3

	4

	5

Section 1 is closest to the ceiling. Section 5 is closest to the floor. Note that section 3 will only be present for wall blocks, or for the gray squares (what I call Panels).

The line between 1 and 2 is lowered using R-F keys.

The line between 2 and 3 is lowered using Ceiling +/-.

The line between 3 and 4 is raised using Floor +/-.

The line between 4 and 5 is raised using E-D keys.

	wId
	This identifies what type of block this is.

TYPE_BLOCK_FLOOR
0x0001

 This is a standard floor block. It has a ceiling part and a floor part. Both parts are present.

TYPE_BLOCK_WALL
0x000e

 This is a standard wall block. It extends from floor to ceiling.

TYPE_BLOCK_DOOR
0x0007

 This is a floor block that has a door in both the ceiling and floor.

TYPE_BLOCK_FDOOR
0x0003

 This is a floor block that has a door in the floor only.

TYPE_BLOCK_CDOOR
0x0005

 This is a floor block that has a door in the ceiling only.

TYPE_PANEL_WALL
0x001e

 This is a standard panel (gray square).

TYPE_PANEL_DOOR
0x0006

 This is a panel (gray square) that is a door.

	wFlags1
	Various flags describing the block.

BLOCK_F1_MONKEY
0x4000

 This flag is set if this is a monkey block.

BLOCK_F1_OPACITY2
0x1000

 This flag is set if Toggle Opacity 2 is on. For this to work, the Toggle Opacity (OPACITY) flag must ALSO be set.

BLOCK_F1_FDOOR

0x0800

 Not sure exactly. But it is only set if this block is part of a floor door. One more thing I have to figure out.

BLOCK_F1_CLIMB_N
0x0200

 This flag is set if climb is turned on for the north of the block.

BLOCK_F1_CLIMB_W
0x0100

 This flag is set if climb is turned on for the west of the block.

BLOCK_F1_CLIMB_S
0x0080

 This flag is set if climb is turned on for the south of the block.

BLOCK_F1_CLIMB_E
0x0040

 This flag is set if climb is turned on for the east of the block.

BLOCK_F1_BOX

0x0020

 This flag is turned on if this is a box block.

BLOCK_F1_DEATH

0x0010

 This flag is turned on if this is a death block.

BLOCK_F1_OPACITY
0x0008

 This flag is turned on for Toggle Opacity AND for Toggle Opacity 2.

BLOCK_F1_FALL

0x0002

 Not exactly sure. It is only set if the block is part of a floor door, and you are able to fall thru to the room below. One more thing I have to figure out.

BLOCK_F1_TRIGGER
0x0001

 This flag is set if there is a trigger on this block.

	sYClickWorldFloor
	The click level of the lowest corner of the floor part of the block. This refers to the lowest corner of the part raised using Floor +/-.

The range is –126 thru 126. Negative is down.

	sYClickWorldCeiling
	The click level of the highest corner of the ceiling part of the block. This refers to the highest corner of the part lowered using Ceiling +/-.

The range is –126 thru 126. Negative is down.

	cFFace
	This is an array of 4 signed byte values. Each value represents one corner of the surface of the floor part of the block that is raised using Floor +/-. Values are always positive.

This value is added to sYClickWorldFloor to get the actual click height of this corner of the block. The order of the bytes is

BLOCK_CORNER_SW

0

BLOCK_CORNER_NW

1

BLOCK_CORNER_NE

2

BLOCK_CORNER_SE

3

	cCFace
	This is an array of 4 unsigned byte values. Each value represents one corner of the surface of the ceiling part of the block that is lowered using Ceiling +/-. Values are always negative.

This value is added to sYClickWorldCeiling to get the actual click height of this corner of the block. The order of the bytes is

BLOCK_CORNER_SW

0

BLOCK_CORNER_NW

1

BLOCK_CORNER_NE

2

BLOCK_CORNER_SE

3

	cFDiv
	This is an array of 4 signed byte values. Each value represents one corner of the surface of the floor part of the block that is raised using the E-D keys. It divides the walls into 2 parts for texturing. Values are always negative.

This value is added to sYClickWorldFloor to get the actual click height of this corner of the block. The order of the bytes is

BLOCK_CORNER_SW

0

BLOCK_CORNER_NW

1

BLOCK_CORNER_NE

2

BLOCK_CORNER_SE

3

	cCDiv
	This is an array of 4 signed byte values. Each value represents one corner of the surface of the ceiling part of the block that is lowered using the R-F keys. It divides the walls into 2 parts for texturing. Values are always positive.

This value is added to sYClickWorldCeiling to get the actual click height of this corner of the block. The order of the bytes is

BLOCK_CORNER_SW

0

BLOCK_CORNER_NW

1

BLOCK_CORNER_NE

2

BLOCK_CORNER_SE

3

	texTextures
	This is an array of structures describing the texture used on each possible surface of the block. The structure is described next. The order of the structures – the surface they represent – is below. The N/W is the direction the surface faces. The 1 – 5 represent the sections described earlier.

If you only use the standard sections, then section 1, 3, and 4 are always used by the LE. It is important to note the use of section 1 instead of 2, as this seems backwards. But it is the way they did it, so we have to live with it.

BLOCK_TEX_FLOOR
0

 This is for the floor surface that faces up. If the floor surface is split into triangles, this represents the SE or SW corner triangle.

BLOCK_TEX_CEILING
1

 This is for the ceiling surface that faces down. If the ceiling surface is split into triangles, the represents the SE or SW corner triangle.

BLOCK_TEX_N4

2

 This is section 4 of the North facing wall.

BLOCK_TEX_N1

3

 This is section 1 of the North facing wall.

BLOCK_TEX_N3

4

 This is section 3 of the North facing wall.

BLOCK_TEX_W4

5

 This is section 4 of the West facing wall.

BLOCK_TEX_W1

6

 This is section 1 of the West facing wall.

BLOCK_TEX_W3

7

 This is section 3 of the West facing wall.

BLOCK_TEX_F_NENW
8

 If the floor is split into triangles, this is for the NE or NW corner triangle of the floor.

BLOCK_TEX_C_NENW
9

 If the ceiling is split into triangles, this is for the NE or NW corner triangle of the ceiling.

BLOCK_TEX_N5

10

 This is section 5 of the North facing wall.

BLOCK_TEX_N2

11

 This is section 2 of the North facing wall.

BLOCK_TEX_W5

12

 This is section 5 of the West facing wall.

BLOCK_TEX_W2

13

 This is section 2 of the West facing wall.

	wFlags2
	A few more flags about the block.

BLOCK_F2_BEETLE

0x0040

 This flag is set if you place the Clockwork Beetle on the block.

BLOCK_F2_TRIGGERER
 0x0020

 This flag is set if you place a Trigger Triggerer on the block.

BLOCK_F2_NC_C_NE_NW
0x0010

 This flag is set if the NE or NW corner of the ceiling is marked as No Collision.

BLOCK_F2_NC_C_SE_SW
 0x0008

 This flag is set if the SE or SW corner of the ceiling is marked as No Collision.

BLOCK_F2_NC_F_NE_NW
 0x0004

 This flag is set if the NE or NW corner of the floor is marked as No Collision.

BLOCK_F2_NC_F_SE_SW
 0x0002

 This flag is set if the SE or SW corner of the floor is marked as No Collision.

	wFlags3
	And another flag, probably a late addition.

BLOCK_F3_TRI_SPLIT
0x0001

 This flag is set if you use ALT-click on a block split into triangles. It causes the block to split on the opposite diagonal, allowing you to make those neat pyramid corners.

Now, for the texture descriptions. This structure tells whether you have a color or texture on a surface. It also describes rotation, flip/mirror, and which triangle of the tile is being used on the surface. Here is the structure.

typedef struct PRJ_TEXINFO_S

{

WORD
wType;

BYTE

bIndex;

BYTE

bFlags1;

BYTE

bRotation;

BYTE

bTriangle;

WORD
filler;

} prj_tex_t, *pprj_tex_t;

So short and simple, yet so powerful. Without it, no textures.

	wType
	This describes the type of texture applied to the surface.

TYPE_TEXTURE_NONE
0x0000

 No texture or color has been applied yet.

TYPE_TEXTURE_COLOR
0x0003

 A color is applied, using the palette under the 3D display.

TYPE_TEXTURE_TILE
0x0007

 A texture is applied from the TGA.

	bIndex
	If a color is applied, this is the index of the color in the TR color palette.

If a texture is applied, this is the low 8-bits of the texture number.

	bFlags1
	Some flags about the texture.

TEX_F1_FLIPPED

0x80

 This flag is set for a flipped texture.

TEX_F1_TRANSPARENT
0x08

 This flag is set for a transparent texture.

TEX_F1_DOUBLESIDED
0x04

 This flag is set for a double sided texture.

TEX_F1_PARTIALTILE
0x03

 These 2 low-order bits are the high-order bits of the texture index. Multiply the value in these bits by 256 and add bIndex to get the full texture number. This allows up to 1024 textures. The first 256 are reserved for the tiles in the TGA file. The rest are for partial-tile textures.

	bRotation
	This indicates the amount of rotation for the texture. I think they indicate clockwise rotation, but I haven’t checked.

TEX_ROT_NONE
0

TEX_ROT_90

1

TEX_ROT_180
2

TEX_ROT_270
3

	bTriangle
	This indicates which triangular part of the texture is to be used for triangular surfaces (split floor or ceiling faces). This is the part outlined in green in the texture display.

TEX_TRI_NW
0

TEX_TRI_NE

1

TEX_TRI_SE

2

TEX_TRI_SW
3

Well, that pretty much covers everything to do with the rooms and objects and lights and other stuff. But we aren’t done yet. After all of the rooms, there is more information, and that is covered next. So let’s move on.

Unused Index Tables
 There are 3 tables that are used to keep track of unused index numbers for Things, Lights, and Triggers. The method used is pretty creative, but can be a little hard to visualize without an example, so there will be an example given.

 Each of these tables has WORD type entries. The Unused Thing table has 2000 entries. The Unused Light table has 768 entries. The Unused Trigger table has 512 entries. The way the tables work is like this.

 We will use the Unused Thing table as an example. The other tables work the same way, but with fewer entries. The table starts filled in with the values 0 – 1999 placed into their corresponding entries (index 0 contains 0, index 1 contains 1, etc).

 When you add an object, say a baddy, LE says how many things are there in the map? At first, there are ZERO. So the LE goes to entry ZERO in the Unused Thing table, and finds the value ZERO. So the baddy is assigned Thing Index ZERO.

 Now, you add another baddy. The LE says how many things are in the map? There is one thing in the map. So the LE goes to entry 1 in the Unused Thing table, and finds the value 1. So the second baddy is assigned the Thing Index 1.

 Now you add a trigger for the second baddy. The LE says how many things are in the map? There are 2 things in the map. So the LE goes to entry 2 in the Unused Thing table, and finds the value 2. So the trigger is assigned the Thing Index 2.

 Beginning to see how this works? You will probably wonder, why not just use the number of things as the next Thing Index? That would work fine, until you delete a thing from the map. So let’s do it.

We have the following things in the map:

 Baddy
Index 0

 Baddy
Index 1

 Trigger
Index 2

The start of our Unused Thing table looks like this:

 Index 0
0

 Index 1
1

 Index 2
2

 Index 3
3

Now, let’s delete the baddy at index 0. This means that index 0 will be available for reuse by another thing. How can we show that index 0 is now available again?

Right now, we have 3 things, and the 3rd entry points to 3, which is the next available index. But we are deleting a thing. So now we only have 2 things in the map. Now we are pointing to the 2nd entry in the table. We just freed up index ZERO. So let’s put ZERO into entry 2 of the table. It now looks like this:

 Index 0
0

 Index 1
1

 Index 2
0

 Index 3
3

Notice that ZERO appears in the table twice. We have 2 things in the map. If we add another thing, the LE will look at index 2 in the Unused Thing table. There, it finds the value ZERO, which will be assigned to the new thing. This is exactly what we want.

 It can be a little difficult to see how this can work. Try adding and deleting things, following the directions above. You will soon grasp the idea.

 Why is it important to understand how these tables work? Well, it really isn’t, unless you are writing a program to manipulate the things in a project. If you want to add or delete things or lights or triggers, or just fix a project (which can require deleting things), then you need to modify these tables. I just ignore the tables and completely rebuild them from scratch.

Anyway, let’s move on to the format of this part of the project.

DWORD
dwNumThings;
// number of things in the map

DWORD
dwMaxThings;
// always 2000

DWORD
dwUnusedThings[2000];

DWORD
dwNumLights;
// number of lights in the map

DWORD
dwUnusedLights[768];

DWORD
dwNumTriggers;
// number of triggers in the map

DWORD
dwUnusedTriggers[512];

That is basically it. After the above description, I don’t think there is any need for a field-by-field description. I will point out that the lights section includes Lights, Shadows, Suns, Effect lights, Spotlights, and Fog Bulbs.

TGA and Texture Information
 This section provides the name of the TGA file. It also indicates how many textures are defined, and exactly what part of a tile each texture uses. Not very clear, but it will be soon.

 First is the name of the TGA file. This is the full pathname, including drive. It is terminated by a space, which is very unusual. Because of this non-standard terminator, you cannot have a TGA file with a space in the name. The LE will let you load it, and will save the project without any errors. But when you load the project again, the LE will choke, and end up crashing. I don’t know if there is a maximum length for the pathname. In my fix program, I used a limit of 255 characters, which is pretty standard.

 If you have not loaded a TGA file yet, the pathname will be set to the constant string “NA “. If there is no TGA file, skip to the WAS Information, because there is no more texture information in the project. This gives something to search for, and provides a good spot for synchronizing your location in the project. Of course, if you have loaded a TGA file, there will be a pathname, but those are easy to spot.

 After the pathname is

DWORD
dwNumTextures;

This contains the total number of textures that have been defined. If you have loaded a TGA file, this will always be at least 256, no matter how big the TGA file is. The LE will pad the TGA file up to 256 tiles with the transparent color. In fact, if the TGA has 2 tiles in a row that are completely transparent, the LE stops loading tiles. Any tiles after the transparent tiles will not be there. Remember this, it bit me once before.

 When the LE loads the TGA file, it must, of course, have a width of either 256 or 512 pixels. If the width is 512, the LE converts it to 256. It is not possible for the LE to work with 512 pixel TGA files, as you will soon see. The first 4 tiles are placed on the first row, and the second 4 tiles are placed on the row below that. Then the second row of 8 tiles is handled the same way. This continues until the end of the TGA file, or until 256 tiles are loaded.

 After the number of textures is an array of texture information structures. The number of entries in the array is, of course, equal to dwNumTextures. The format of the structure is given below. I called it a tileinfo structure, even though it is also used for partial-tile textures.

typedef struct PRJ_TILEINFO_S

{

BYTE

bXOfs;

// left X pixel pos in TGA

WORD
wYOfs;

// top Y pixel pos in TGA

BYTE

unused;

// = 0

BYTE

dummy1;

// = FF

BYTE

bXEnd;

// right X pixel pos (inclusive)

BYTE

dummy2;

// = FF

BYTE

bYEnd;

// bottom Y pixel pos (inclusive)

} prj_tile_t, *pprj_tile_t;

	bXOfs
	The pixel offset of the left side of the texture within the TGA. This only permits the texture file to be 256 pixels wide at most. For full tiles, it must be a multipl of 64 (0, 64, 128, 192). For partial tiles, it may be any multiple of 16.

	wYOfs
	The pixel offset of the top of the texture within the TGA. The maximum height allowed for a TGA file is 4096 (for width of 256). Since 512 pixel wide TGA files are converted to 256, that makes 4096 the true maximum height.

This offset can be at most 4032 for full tiles, or 4080 for partial tiles.

For full tiles, it must be a multiple of 64. For partial tiles, it may be any multiple of 16.

	bXEnd
	This is the pixel offset of the rightmost pixel within the tile. For full tiles, it must be 63. For partial tiles it must be 15, 31, 47, or 63. It is basically the pixel width of the texture minus 1. It cannot be set so that the texture would cross a tile boundary.

	bYEnd
	This is the pixel offset of the bottom pixel within the tile. For full tiles, it must be 63. For partial tiles it must be 15, 31, 47, or 63. It is basically the pixel height of the texture minus 1. It cannot be set so that the texture would cross a tile boundary.

WAS Information
 This section provides the base name of one of the wad files. It is not necessarily the name of the WAS or WAD file. I have seen the name of the SFX file and the CD file. What it does is provide the base name for any of the wad files. By changing just the extension, you can get to any of the wad files you need.

 Just like the TGA file, this is the full pathname. It is also terminated by a space, so the same warnings apply concerning how you name your wad files – NO SPACES.

 Also, if you haven’t loaded any objects yet, this will contain the constant string “NA “. If you haven’t loaded objects yet, there will be no more wad information, so skip to the Project Tail section.

 After the pathname is

DWORD
dwNumSlots;

This will always contain 526. This is the total number of defined slots available in TR:LR. All of the slots are represented, even if the object is not included in the wad file.

After this is an array of structures describing the object in the slot. But the entries are variable-length, making it harder to parse. You can’t just skip to the end of the table, you have to pass through it sequentially. Basically, the structure looks like below.

First is the type of object in the slot.

WORD
wSlotType;

Next is the symbolic name of the slot.

CHAR

cSlotName[];

The slot name is variable length, and is terminated by a space.

After the name is the following fixed-format structure.

typedef struct PRJ_WASINFO_S

{

DWORD
wSlot;

// slot # of object

WORD
wWest;

// default 2

WORD
wNorth;

// default 2

WORD
wEast;

// default 1

WORD
wSouth;

// default 1

short

wCollision[5][5];
// height of object at block

short

wMode[5][5];

// collision mode for block

} prj_was_t, *pprj_was_t;

 I pretty much understand how all of these fields work. You change them using the Object->Edit function in the LE menus. Unfortunately, their function has been disabled. I won’t describe the original purpose of the fields here. If you want that information, I might be convinced to provide it, for what it’s worth.

 The only purpose the fields after wSlot serve is to set the collision height of an object. It does not actually change the height of the object, or make the game treat it like it was shorter or taller. What it does is fake the engine into thinking the object is a certain height, so that Lara can climb on top of it. But if the object is taller than you said it is, then Lara will immediately fall off as she collides with the side of the object. When you use Object->Edit, there is a grid of 5x5 squares. It doesn’t matter which square you select. Click the + button to set the height of the object in clicks. If you set it to 4, the object will be treated like it is 4 clicks high. Then Lara will climb onto it like any 4-click high block.

 One problem – if you set the height of any Pushable object, it does not make it climbable. Instead, it raises it that many clicks into the air, with an invisible block below it. Lara can climb onto the invisible block, but will immediately collide with the pushable object and fall off.

 Anyway, the only important field here is wSlot. This is the numeric value of the slot, in the range 0 – 525. Each number is associated with a specific symbolic name. This slot number is what determines the behavior of the object in the game. A complete list of slot numbers and their symbolic names is provided in another file.

When parsing these fields, first check wSlotType for the following values.

TYPE_WAD_EMPTY
0x0000

 This means this slot is not included in the wad file. There is no name, and no structure, kind of like for rooms. The wSlotType field is immediately followed by another wSlotType field.

TYPE_WAD_FILE

0x0008

 This is for objects that are actually another file. The only wad objects I am aware of that use this code are SKY_GRAPHICS, DEFAULT_SPRITES, and MISC_SPRITES.

TYPE_WAD_SPECIAL
0x0010

 This is for objects that require special attention by the game engine. This is any sort of animated object like Lara and baddies, as well as any type of pickup item, puzzles, keys, etc. Anything the game engine must handle in a special way.

TYPE_WAD_STATIC
0x0110

 This is for all static objects. It includes PLANTn, FURNITUREn, ROCKn, ARCHITECTUREn, DEBRISn, and SHATTERn. If you are like me, you probably think the SHATTERn objects require special attention. But they are lumped together with the static objects.

Well, there really isn’t much more to say about the wad information.

Project Tail
 I think the information in this part of the project was added at a later point during development of Tomb Raider. It is almost like an afterthought, though it is certainly useful in a project. All of this information is fixed length, which is one reason I think it was added later on during development.

 The structure is below.

typedef struct PRJ_PRJEND_S

{

DWORD
dwNumAnimations;

DWORD
dwUnusedAnimations[MAX_ANIMATIONS];

DWORD
dwTileAnim[MAX_TGATILES];

prj_aniseq_t
aniRange[MAX_ANIMATIONS];

char

cTerrain[MAX_TGATILES];

char

cBump[MAX_TGATILES];

} prj_prjend_t, *pprj_prjend_t;

	dwNumAnimations
	This contains the number of texture animation ranges that are defined. The maximum is 40 animation ranges.

	dwUnusedAnimations
	This is the table for unused texture animation range index numbers. It works just like the other unused index tables. It has 40 entries originally numbered 0 – 39.

	dwTileAnim
	This is a table of 256 entries, one for each possible full tile in the TGA file. It is indexed by the full tile number, 0 – 255. Each entry has the number of the animation range that this tile belongs to. If the tile is not in any animation range, it contains 0xffffffff.

	aniRange
	This is an array of 40 animation structures describing the animation ranges. The structure is covered below.

	cTerrain
	This is what I call the terrain code. Basically, it is the texture sounds. This is an array of 256 characters, one for each full tile. The character contains a code describing the type of surface that tile texture is, so that different types of footsteps can be played. The default code assigned to all tiles in a new project is TERRAIN_STONE.

TERRAIN_MUD

0

TERRAIN_SNOW

1

TERRAIN_SAND
 2

TERRAIN_GRAVEL

3

TERRAIN_ICE

4

TERRAIN_WATER

5

TERRAIN_STONE

6

TERRAIN_WOOD

7

TERRAIN_METAL

8

TERRAIN_MARBLE
9

TERRAIN_GRASS

10

TERRAIN_CONCRETE
11

TERRAIN_OLD_WOOD
12

TERRAIN_OLD_METAL
13

	cBump
	This is the bump level settings. It is an array of 256 characters, one for each full tile. It contains a simple binary code giving the bump level for each tile. The default for new projects is BUMP_NONE.

BUMP_NONE
0

BUMP_LEVEL_1
1

BUMP_LEVEL_2
2

Now for the animation ranges structure.

typedef struct PRJ_ANISEQ_S

{

DWORD
dwDefined;

// 1 = defined, 0 = not

DWORD
dwFirstTile;

// 0-255

DWORD
dwLastTile;

// 0-255

} prj_aniseq_t, *pprj_aniseq_t;

	dwDefined
	This is ZERO if the animation range is not used. It is 1 if the animation range is being used.

	dwFirstTile
	This is the tile number of the first tile in the animation range.

	dwLastTile
	This is the tile number of the last tile in the animation range.

 Well, that pretty much covers everything I know about project files.

 If anyone has anything to add, please do. I only need a few more facts, and I can start matching everything to TOM files. Once I can do that, Several options open up. Like a new level editor, with a project file format that doesn’t corrupt so easily. Or converting TOM files to PRJ files. Or extracting PRJ files from a TR4, which will let us get projects for ALL of the TR4 levels. That would also get us information about things like OCB settings, how to setup traps and puzzles, etc.

 But that is still a little ways off, if it ever happens. But dreaming is nice.

- - - - - - - - - - - - - END OF DOCUMENT - - - - - - - - - - - - - - -

Last printed 9/10/01 5:10

